

Modelling power exhaust

- Motivation
- Introduction to Scrape-Off Layer physics
- Numerical tools
- Validating our understanding in present devices

 Maximize pumping of He ash (minimize fuel dilution)
 Provide sufficient pumping of hydrogen fuel
 Minimize damages to the wall (erosion, melting)

Figure 1.2: The schematic of a limiter configuration [8].

P. Stangeby "The plasma boundary of magnetic fusion devices" IOP 2002

Divertor

Figure 1.3: The schematic of a divertor configuration [8].

P_{heat} in centre

From JET

From JET

A simple and useful description of the SOL

The Sheath

.1: Schematic view of the SOL with presheath (plasma) and sheath (from

The sheath in a magnetic field

ure 2.2: Schematic view of the presheath and sheath in a scrape off layer with ma $\frac{d}{\lambda_{Debye}} = \left(5.53 \times 10^7 T_e/n_e\right)^{1/2} [m], \qquad \underline{ \qquad } \qquad \underline{ \qquad \qquad } \qquad \underline{ \qquad \qquad } \qquad \underline{ \qquad \qquad$

$v_{se} \ge c_s = (e(Z_iT_e + \gamma T_i)/m_i)^{1/2},$ Bohm Chodura

with Z_i the ion charge, $\gamma = 1$ for isothermal flow, $\gamma = 5/3$ for adiabatic flow with isotropic pressure and $\gamma = 3$ for 1D adiabatic flow with no perpendicular heat conduction (see

$$n_{se} = n_0 \exp(V_{se}/(T_e)),$$
 (2.49)

with n_0 the electron density at V = 0. Using the above equation with $V_{se} = -0.7T_e$ gives

$$n_{se} = 0.5n_0$$
 (2.50)

Particle and energy fluxes across the sheath

$$\Gamma_{se} = n_{se} v_{se}$$
. Particle flux across sheath

Energy flux across sheath

$$q_{se,e}^{\epsilon} = \gamma_e e T_e \Gamma_{se},$$

IDD

where

$$\begin{array}{lll} \gamma_{e} & = & 2 + |V_{sf}|/(eT_{e}) + |V_{pre-sheath}|/(eT_{e}) \\ \\ & \approx & 2 + 3 + 0.7 = 5.7 \end{array}$$

Ion heat flux across sheath entrance assuming drifting maxwellian ions with Bohm Chodura at sheath entrance as boundary

$$q_{se,i}^{\epsilon} = \left(\frac{5}{2}kT + \frac{1}{2}m_ic_s^2\right)\Gamma_{se},$$

so that $\gamma_i = 3.5$ if $T_e = T_i$. Values of $\gamma_i \approx 2 - 3$ have been found The total sheath heat transmission factor for electrons plus ions is thus

$$\gamma\simeq 7-9$$
,
otal energy flux across the sheath

However, sheath needs kinetic treatment of ions

$$q_{\parallel i} \equiv \chi_{\parallel i} \nabla_x T_i = -\kappa_{0i} T_i^{5/2} \nabla_x T_i \tag{2.35}$$

$$q_{\parallel e} \equiv \chi_{\parallel e} \nabla_x T_e = -\kappa_{0e} T_e^{5/2} \nabla_x T_e \tag{2.36}$$

with the ion and electron heat conductivity coefficients:

$$\kappa_{0i} = \frac{1249}{Z_i^4 m_i^{1/2} \ln \Lambda} \approx 60 \tag{2.37}$$

$$\kappa_{0e} = \frac{30692}{Z_i \ln \Lambda} \approx 2000 \tag{2.38}$$

where the temperatures are given in [eV], lengths in [m], the Coulomb logarithm $\Lambda \approx 15$ [28], the mass in units of atomic mass [amu], q in $[W/m^2]$ and the approximate numerical values have been calculated assuming a D plasma. If He^{2+} is the dominant ion species, κ_{0i} is 30 times smaller in a helium plasma.

$$p_t^{tot} = n_t (2kT_t + mc_s^2) = 2n_u kT_u = p_u^{tot}; T_e = T_i,$$

- 1. Ion-neutral friction is negligible along the SOL.
- 2. Radiation losses along the SOL are negligible compared to P_{SOL} .
- All neutrals recycling from the targets are immediately ionized in front of the targets on the same flux tube as the original impinging ions.
- 4. The only parallel plasma flow is that between the ionization zone and the target (eqn. 2.48), v = 0 upstream and $v = c_s$ at the target sheath entrance.
- 5. No cross-field particle and momentum transport.
- 6. Surfaces are the only particle sinks, no volumetric recombination.

applying $q_{se}^{\epsilon} = \gamma k T_e \Gamma_{se}$ $2n_tT_t = n_uT_u$ $T_u^{7/2} = T_t^{7/2} + \frac{7}{2} \frac{q_{\parallel} L_c}{\kappa_{0e}}$ *Two-point model:* $q_{\parallel} = \gamma n_t k T_t c_s.$ $T_u \simeq \left(\frac{7}{2}\frac{q_{\parallel}L_c}{\kappa_{0,c}}\right)^{2/7} \text{with } T[eV], T_u^{7/2} \gg T_t^{7/2}$ \rightarrow $T_t \propto q_{\parallel}^{10/7} L_c^{-4/7} n_u^{-2}$ $n_t \propto n_u^3 q_{\parallel}^{-8/7} L_c^{6/7}$ $\Gamma_t \propto n_u^2 q_{\parallel}^{-3/7} L_c^{4/7}$

Corrections to the two point model

$$T_t \propto \frac{(1 - f_{power})^2}{f_{mom}^2 f_{cond}^{4/7}}$$
$$T_u/T_t \propto \frac{f_{cond}^{6/7} f_{mom}^2}{(1 - f_{power})^2}$$
$$n_t \propto \frac{f_{mom}^3 f_{cond}^{6/7}}{(1 - f_{power})^2}$$
$$\Gamma_t \propto \frac{f_{mom}^2 f_{cond}^{4/7}}{1 - f_{power}}$$

→ High complexity of interdependent quantities

Numerical Tools

- derived from 0.-2. moments of Landau's equation:

$$\frac{\partial f(\vec{r},\vec{v},t)}{\partial t} + \vec{v} \cdot \nabla_{\vec{r}} f(\vec{r},\vec{v},t) + \dot{\vec{v}} \cdot \nabla_{\vec{v}} f(\vec{r},\vec{v},t) = C[f(\vec{r},\vec{v},t)]$$

- Oth moment: particle conservation

$$\frac{\partial n_i}{\partial t} + \vec{\nabla}(n_i \vec{v}_i) = S_i \qquad \frac{\partial n_e}{\partial t} + \vec{\nabla}(n_e \vec{v}_e) = S_e$$

- quasi-neutrality:
$$n_e = n_i \left(=\sum Z_a n_a\right)$$

$$\frac{\partial}{\partial t}(m_i n_i \vec{v}_i) + \vec{\nabla}(m_i n_i \vec{v}_i \vec{v}_i) = -\vec{\nabla} p_i - \vec{\nabla} \cdot \vec{\Pi}_i + Z_i en_i \left(\vec{E} + \vec{v}_i \times \vec{B}\right) + \vec{R}_i + \vec{S}_{m_i \vec{v}_i} \quad \text{ions} \\ -\vec{\nabla} p_e - en_e \left(\vec{E} + \vec{v}_e \times \vec{B}\right) + \vec{R}_e = 0 \quad \text{electrons}$$

$$\begin{aligned} \text{friction:} \qquad \vec{R}_e &= -\vec{R}_i = en_e \left(\frac{\vec{j}_{\parallel}}{\sigma_{\parallel}} + \frac{\vec{j}_{\perp}}{\sigma_{\perp}} \right) - 0.71 n_e \vec{\nabla}_{\parallel} T_e - \frac{3}{2} \frac{en_e^2}{\sigma_{\perp} B^2} \vec{B} \times \vec{\nabla} T_e \\ \text{total current:} \qquad \vec{j} &= e \left(Z_i n_i \vec{v}_i - n_e \vec{v}_e \right) \end{aligned}$$
$$\end{aligned}$$

[assumption: velocity is linear sum of average + fluctuations, ie: $\langle v \rangle + \tilde{v}$ (no non-linear coupling), re-introduce eg. $\langle \tilde{v}_{\alpha} \tilde{v}_{\beta} \rangle$ and off-diagonal terms within turbulent models]

$$\frac{\partial}{\partial t} \left(\frac{3}{2} n_i T_i + \frac{1}{2} m_i n_i \vec{v}_i^2 \right) + \vec{\nabla} \cdot \left[\left(\frac{5}{2} n_i T_i + \frac{1}{2} m_i n_i \vec{v}_i^2 \right) \vec{v}_i + \vec{\Pi}_i \cdot \vec{v}_i + \vec{q}_i \right] = \left(Z_i e n_i \vec{E} - \vec{R} \right) \cdot \vec{v}_i - Q_{ei} + S_{E_i}$$

$$\frac{\partial}{\partial t} \left(\frac{3}{2} n_e T_e\right) + \vec{\nabla} \cdot \left[\frac{5}{2} n_e T_e \vec{v}_i + \vec{q}_e\right] = -e n_e \vec{E} \vec{v}_e + \vec{R} \cdot \vec{v}_i + Q_{ei} + S_{E_e} \qquad \qquad Q_{ei} = \frac{3m_e}{m_i} \frac{n_e}{\tau_e} \left(T_i - T_e\right)$$

- higher moments > 2^{nd} order disregarded
- close equations via specifying heat fluxes:

$$\begin{split} \vec{q}_i &= -\kappa_{\parallel}^i \nabla_{\parallel} T_i - \kappa_{\perp}^i \nabla_{\perp} T_i + \kappa_{\times}^i \frac{\vec{B}}{B} \times \vec{\nabla}_{\perp} T_i \\ \vec{q}_e &= -\kappa_{\parallel}^e \nabla_{\parallel} T_e - \kappa_{\perp}^e \nabla_{\perp} T_e + \kappa_{\times}^e \frac{\vec{B}}{B} \times \vec{\nabla}_{\perp} T_e - 0.71 \frac{T_e}{e} \vec{j}_{\parallel} - \frac{3}{2} \frac{T_e}{2e\omega_e \tau_e B} \vec{B} \times \vec{j}_{\perp} \end{split}$$

- plus an expression for the ion viscosity tensor $\vec{\Pi}_i$

simulation domain, 2D

- usual assumption: toroidal symmetry
 - \rightarrow convolutes parallel and diamagnetic transport into combined poloidal transport
- non-homogeneous 2D (ρ , θ)-grid: orthogonal cells aligned to flux-surfaces
- difficulty: strong bending of flux-surfaces, target cell-boundaries tilted
 - ightarrow possible solution: increase grid resolution

1 d

Real problem is 3d space, 2/3d velocity

IPP

- Plasma recombines to form neutrals
 - at surfaces [interaction with solids/or liquids]
 - in the volume
- Neutrals act as sources of particles, momentum and energy for the plasma
- Neutrals also interact with material surfaces
- Neutrals can be described by one of (or combination of)
 - fluid model
 - kinetic model

Т

Т

	Fluid	Kinetic
Dimensionality	2D	2D or 3D
Speed	Fast	Slower
Accuracy	Satisfactory upstream	Good everywhere
Ease of including details of structures	Difficult	Relatively easy
Ease of including atomic/surface physics effects	Moderate	Relatively easy for most, more difficult for others
Convergence	No new complications	Monte-Carlo noise

Ultimately a choice between speed and accuracy

SOLPS modelling: inputs and outputs, and the connection between

What is a typical code package for the SOL/divertor?: E.g. SOLPS?

ASDEX Upgrade

Suite of codes EQUILIBRIUM Grid preparation CARRE CARRE AGG DG DG AGG - (TRIANG) **B**2 Plasma **EIRENE** - B2, B2.5 Neutrals **B2-**EIRENE EIRENE Coupled **B2-EIRENE MDSplus** Visualization **B2PLOT B2PLOT**

Common setup

Pumping speed at pump entrance

$$Q = P \frac{dV}{dt} \Rightarrow S \equiv \frac{Q_p}{P_p}$$

$$U = C \qquad D$$
Source Pump

Def. of conductance:

$$Q = C(P_u - P_d)$$

Because of continuity we have:

$$S_{net} = \frac{P_d}{P_u} S_p = \frac{S}{K_p}$$

$$K_p = 1 + \frac{S}{C}$$

Need to know the conductances and intrinsic pumping speed!

A. Scarabosio, ASDEX Ringberg seminar, November 23th 2010, Ringberg

AUG as a simple vacuum system

- Gas source are in main chamber and divertor
- Plasma acts both source and sink
- ideally one would like $C_3=0$ and $C_2 >> S$. Unfortunately this is not the case!

In-vessel pressure measurements

- AUG equipped with 20 ionisation gauges ("ASDEX" type) for polodal and toroidal coverage
- Gauges installed in a box with a small orifice on top \Rightarrow measures neutral flux density:

$$T = \frac{1}{4} \iiint f_n |\vec{v}| d\vec{v} = \frac{1}{4} n \sqrt{\frac{8}{\pi} \frac{k_B T}{m}} = \frac{1}{4} n v_a$$

situ) with 10% accuracy against Baratron

AUG conductance modelling in FMR

• The AUG poloidally and toroidally distributed ducts (3D) can be mimed in EIRENE with poloidally distributed (2D) (and toroidally uniform) ducts preserving the total effective conductance in free molecular regime

model	AUG ducts	EIRENE model
Main chamber to pump chamber	51 [m ³ /s]	1.5cmx10.3 7mx0cm
Divertor to pump chamber	17 [m ³ /s]	1cmx10.37 x3.5cm
Sub-divertor to pump chamber	66 [m ³ /s]	3.2cmx10.3 7mx5cm
Total	134 [m ³ /s]	
Model assumption on perpendicular plasma transport

D or v?

diffusive convective $\Gamma_{\perp} = -D \frac{\partial n}{\partial r} + v_{\perp} n$

- The fluid codes only use Γ in the calculations, information about the underlying nature is lost
- The SOL density depends on the sources and varies in the simulations, leading to rapid changes in Γ_{conv}=> using Γ_{diff} tends to be significantly more stable (practical choice)
- Divertor transport may be sensitive to the model applied upstream
 L. Aho-Mantila TTF 2014

Diffusive or convective perpendicular plasma transport model for the code

D or v?

Radial flux:
$$\Gamma_{diff} = -D \frac{\partial n}{\partial r}$$
 or $\Gamma_{conv} = v_{\perp} n$

rla Assuming a density profile: >

$$n(r) = n_0 e^{-r/\kappa_n}$$

Then with
$$v = \sqrt{\frac{D}{\tau_{\parallel}}}$$
 we get $\Gamma_{diff} = \Gamma_{conv}$

$$\lambda_n = \sqrt{D\tau_{||}} = v\tau_{||}$$

M. Wischmeier, PhD thesis 2004

19th Joint EU-US Transport Task Force Meeting / L. Aho-Mantila

Width of Scrape-Off Layer? What is the power flux?

T. Eich PRL (2011), T. Eich IAEA FEC 2012, A. Scarabosio PSI 2012

$$\lambda_q = 0.73 \cdot B_{tor}^{-0.78} \cdot q_{cyl}^{1.20} \cdot P_{SOL}^{0.10} \cdot R_{geo}^{0.02}$$
(Carbon divertor, attached conditions, inter ELM)

No dependence on machine size R

What is the power flux density in the SOL?

P_{heat}

1.65 m 23 MW

~ 38 MW

~ 100 MW

~ 600 MW

Good energy confinement -> large R $(P_{fus} \sim R^3)$

A measure of the severity of the heat flux is

• P_{heat}/R

M. Kotschenreuter et al. NF 50 2010 K. Lackner Comm. PPCFusion 15 1994

Device	P _{heat} /R	q _∥ upstream
JET	7	2 GW/m ²
ASDEX Upgrade	14	3.5 GW/m ²
ITER	20	5 GW/m ²
DEMO	80-100	>30 GW/m ²

Power load reduced by geometry

Device	P _{heat} /R	q _∥ upstream	q target (geometry)
JET	7	2 GW/m ²	20 MW/m ²
ASDEX Upgrade	14	3.5 GW/m ²	35 MW/m ²
ITER	20	5 GW/m ²	50 MW/m ²
DEMO	80-100	>30 GW/m ²	300 MW/m ²

What are the limitations imposed by wall materials?

lons accelerated to energies \sim Z x 3.5 x T_e in electrical field by sheath potential

Tritium retention

All tungsten plasma facing components in ASDEX Upgrade

DPG School « The physics of ITER » M. Wischmeier

μ

Technological limits under neutron irradiation for a reactor beyond ITER?

Integrated approach: Combination of coolant, structural material of coolant pipe and armour material?

Divertor example

3.4m

www.iter.org

How can we reduce the power load onto the divertor target plates to match the technological limit?

T_e at target > 40eV No reduction of power load

Total plasma pressure is constant along magnetic field line $P_e + P_i + dynamic pressure = constant$

High recycling regime: low T_e (< 5eV), high n_e
 Satisfactory for existing tokamaks
 VERY HIGH PARTICLE FLUXES

Neglecting power loads on PFCs from radiation

→ Total power = (8T + 13.6 + 4.5) 1.602 10 ⁻¹⁹ $\Gamma[W]$; $T_e = T_i = T[eV]$

Power across sheath Surface recombination of D⁺ Recombination of D to D₂**

- ✤ For T_e < 2 eV → heat flux similar to power deposited by surface recombination processes*</p>
- ✤ Power load via radiation to ~2 MW/m² (for ITER A. Loarte et al. PoP 2011)
- ♦ 5 MW/m^2 with T = 1.5 eV → Γ < 5e23 $m^{-2}s^{-1}$

*see also: "ITER Physics basis: Chapter 4, power and particle control", Nucl. Fusion 39 (1999) 2391 and A. Loarte Nucl. Fusion 2007 ** 2.2eV for recombination if one assumes saturated surface, even less if assume transformation into vibrational excitation via Elay-Rideal process

For ITER (10 MW/m² target limit): ~60 - 80% of total plasma heating power needs to be radiated + Ion flux to target reduced to $\sim 10^{24}$ m⁻²s⁻¹

(60-70% of power entering SOL)

For ITER (10 MW/m² target limit): ~60 - 80% of total plasma heating power needs to be radiated + Ion flux to target reduced to $\sim 10^{24}$ m⁻²s⁻¹

(60-70% of power entering SOL)

For DEMO (5 – 10 MW/m² target limit):

> 95% of power need to be radiated + Ion flux to target reduced to $5 \ 10^{23} m^{-2} s^{-1}$

With divertor of similar size to ITER and radiative power ->

70% of power radiated inside LCFS

Radiation limited mostly to edge/pedestal for core performance

In addition limit Target $\rm T_e$ to 2eV - 5eV to limit annual erosion of PFCs by impurities

Power flux can be dropped to < 5MW/m² (see H. Zohm DEMO talk) in existing devices with high P/R

How is the particle flux limited?

$$\begin{split} T_t &= \left[\frac{q_{\parallel}^2}{n_u^2} \left(\frac{7q_{\parallel}L_c}{2\kappa_{0e}} \right)^{-4/7} \frac{2m_i}{\gamma^2 e^2} \frac{\left(1 - f_{pow}\right)^2}{\left(1 - f_{mom}\right)^2 \left(1 - f_{conv}\right)^{4/7}} \right. \\ n_t &= \left[\frac{n_u^3}{q_{\parallel}^2} \left(\frac{7q_{\parallel}L_c}{2\kappa_{0e}} \right)^{6/7} \frac{\gamma^2 e^3}{4m_i} \frac{\left(1 - f_{mom}\right)^3 \left(1 - f_{conv}\right)^{6/7}}{\left(1 - f_{pow}\right)^2} \right. \\ \mathsf{UX} \quad \Gamma_t &= \left[\frac{n_u^2}{q_{\parallel}} \left(\frac{7q_{\parallel}L_c}{2\kappa_{0e}} \right)^{4/7} \frac{\gamma e^2}{2m_i} \frac{\left(1 - f_{mom}\right)^2 \left(1 - f_{conv}\right)^{4/7}}{\left(1 - f_{pow}\right)} \right] \end{split}$$

Particle flux

 f_{pow} : power loss factor (0 − 1) → What is the maximum value? f_{conv} : 0=no convection; 1= only convection → What is the interplay? f_{mom} : momentum loss factor (0 − 1) → What is the maximum?

- Value of the loss factors and what interdependence?
- System codes will require scaling laws to define operational regime of DEMO type device

Prerequisite: Loss of plasma pressure

a) Radiation in the edge of the plasma core
→ Reduction of upstream plasma pressure
→ Reduced recycling

At low Te large Complexity of volumetric and surface processes

Reaction				
$H + e \to H^+ + 2e$				
$H + H^+ \rightarrow H^+ + H$				
$H_2 + e \to H + H + e$				
$H_2 + e \to H_2^+ + 2e$				
$H_2 + e \to H + H^+ + 2e$				
$H^+ + H_2 \rightarrow H^+ + H_2$				
$H^+ + H_2 \rightarrow H + H_2^+$				
$H_2^+ + e \to H + H^+ + e$				
$H_2^+ + e \to 2H^+ + e$				
$H_2^+ + e \to 2H + e$				
$H^+ + \text{electrons}(s) \rightarrow H + h\nu \text{ or electrons}$				
$C + e \to C^+ + 2e$				
$H^+ + C \to C^+ + H$				

+ seeded processes for impurities...

+ surface interaction physics (reflection, recycling)

Molecular assisted recombination	MAR	$D_2(v) + D^+ \rightarrow D_2^+ + D$	$D_2^+ + e \rightarrow D + D$
Molecular assisted dissociation	MAD	$D_2(v) + D^+ \rightarrow D_2^+ + D$	$D_2^+ + e \rightarrow D + D^+ + e$
Molecular assisted ionization	MAI	$D_2(v) + D^+ \rightarrow D_2^+ + D$	$D_2^+ + e \rightarrow D^+ + D^+ + 2e$

b) Pressure loss along field line

- perpendicular transport (independent of T_e)
- ✤ CX reaction losses (T_e<5eV)</p>

Prerequisite: Loss of plasma pressure on a field line

- b) Pressure loss along field line
 - perpendicular transport (independent of T_e)
 - CX reaction losses (T_e<5eV)</p>

How do we apply these codes...?

Elm sync: -5,-0.5 ms

- Edge Thomson scattering (both ne and Te) and Lithium beam (ne) data \Rightarrow relationship between ne and Te, to be matched by SOLPS
- This relationship + constraint on the input power into SOLPS grid determines choice of separatrix position (if wrong → mismatch between ne and Te at sep.)

• SOLPS: ne,sep = 1.6x10¹⁹ m⁻³, Te,sep = 105 eV, Ti,sep = 189 eV, assuming:

- equal sharing of input power into the grid between ion and electron channels
- flux limits set for i/e parallel heat fluxes, 0.3 -for electrons, 1.0 -for ions
- moderate ballooning of transport coefficients (~1/B)
- only Carbon impurity. Phys. sputt. fixed, Chem.sput.yield varied to match Prad
- no driftts

III

Transport coefficients – indicate transport barrier inside of sep.

ASDEX Upgrade

- D_{\perp} has to be reduced to < 0.1 m²/s inside of the separatrix, to describe measured n_e profile (which is strongly affected by ionisation sources)
- Minimum of D_{\perp} and χ_i inside of the separatrix is also obtained for an H-mode in Hydrogen (#17396, Pin=7.8 MW) (*L.D.Horton, IAEA-2004*)

Low recycling

Density ramp experiments in ASDEX Upgrade

- Asymmetry of particle fluxes
- Integral 'roll over' at similar time/density for inner and outer

Drifts: electric potential is calculated self-consistently in each computational cell

- Diamagnetic drift in the up-down direction, drives current and reverses with B
- ExB drifts in poloidal and radial directions, magnitude and direction depend on B and local plasma conditions

$$v_{E \times B} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$$

$$v_{\nabla p} = \frac{\mathbf{B} \times \nabla \mathbf{p}}{enB^2}$$

Comparing virtual diagnostics: Stark broadening

Movement of total radiation and density

Not all divertor regimes are satisfactorily described by existing numerical models Strategy was/is to identify regimes which can be described and which can't

→ Identify missing physics elements in our models?

But...SOL is may also be 3D

DPG School « The physics of ITER » M. Wischmeier

Installation of magnetic perturbation (MP) coils

ASDEX Upgrade

SOL plasma becomes 3D with MP coils

DPG School « The physics of ITER » M. Wischmeier

Electron density with MP coils simulated with EMC3- EIRENE

ASDEX Upgrade, courtesy T. Lunt

DIII-D, H. Frerichs et al. NF 50 034004

Applications for AUG Simulation of the (resonant) magnetic perturbations

T. Lunt, IPP

L-Mode with 4 kAt (R)MPs (n=4)

Applications for AUG Simulation of the (resonant) magnetic perturbations

Energy deposition outer target

